Aug 21

Is there a super-Earth in the Solar System out beyond Neptune?

By Ethan Siegel

When the aSP-Logo-300.endvent of large telescopes brought us the discoveries of Uranus and then Neptune, they also brought the great hope of a Solar System even richer in terms of large, massive worlds. While the asteroid belt and the Kuiper belt were each found to possess a large number of substantial icy-and-rocky worlds, none of them approached even Earth in size or mass, much less the true giant worlds. Meanwhile, all-sky infrared surveys, sensitive to red dwarfs, brown dwarfs and Jupiter-mass gas giants, were unable to detect anything new that was closer than Proxima Centauri. At the same time, Kepler taught us that super-Earths, planets between Earth and Neptune in size, were the galaxy’s most common, despite our Solar System having none.

The discovery of Sedna in 2003 turned out to be even more groundbreaking than astronomers realized. Although many Trans-Neptunian Objects (TNOs) were discovered beginning in the 1990s, Sedna had properties all the others didn’t. With an extremely eccentric orbit and an aphelion taking it farther from the Sun than any other world known at the time, it represented our first glimpse of the hypothetical Oort cloud: a spherical distribution of bodies ranging from hundreds to tens of thousands of A.U. from the Sun. Since the discovery of Sedna, five other long-period, very eccentric TNOs were found prior to 2016 as well. While you’d expect their orbital parameters to be randomly distributed if they occurred by chance, their orbital orientations with respect to the Sun are clustered extremely narrowly: with less than a 1-in-10,000 chance of such an effect appearing randomly.

Whenever we see a new phenomenon with a surprisingly non-random appearance, our scientific intuition calls out for a physical explanation. Astronomers Konstantin Batygin and Mike Brown provided a compelling possibility earlier this year: perhaps a massive perturbing body very distant from the Sun provided the gravitational “kick” to hurl these objects towards the Sun. A single addition to the Solar System would explain the orbits of all of these long-period TNOs, a planet about 10 times the mass of Earth approximately 200 A.U. from the Sun, referred to as Planet Nine. More Sedna-like TNOs with similarly aligned orbits are predicted, and since January of 2016, another was found, with its orbit aligning perfectly with these predictions.

Ten meter class telescopes like Keck and Subaru, plus NASA’s NEOWISE mission, are currently searching for this hypothetical, massive world. If it exists, it invites the question of its origin: did it form along with our Solar System, or was it captured from another star’s vicinity much more recently? Regardless, if Batygin and Brown are right and this object is real, our Solar System may contain a super-Earth after all.

image1_august

A possible super-Earth/mini-Neptune world hundreds of times more distant than Earth is from the Sun. Image credit: R. Hurt / Caltech (IPAC)

This article is provided by NASA Space Place. With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov to explore space and Earth science!

May 15

NOAA’s Joint Polar Satellite System (JPSS) to revolutionize Earth-watching

By Ethan Siegel

If you wSP-Logo-300.enant to collect data with a variety of instruments over an entire planet as quickly as possible, there are two trade-offs you have to consider: how far away you are from the world in question, and what orientation and direction you choose to orbit it. For a single satellite, the best of all worlds comes from a low-Earth polar orbit, which does all of the following:

• orbits the Earth very quickly: once every 101 minutes,
• is close enough at 824 km high to take incredibly high-resolution imagery,
• has five separate instruments each probing various weather and climate phenomena,
• and is capable of obtaining full-planet coverage every 12 hours.

The type of data this new satellite – the Joint Polar Satellite System-1 (JPSS-1) — will take will be essential to extreme weather prediction and in early warning systems, which could have severely mitigated the impact of natural disasters like Hurricane Katrina. Each of the five instruments on board are fundamentally different and complementary to one another. They are:

1. The Cross-track Infrared Sounder (CrIS), which will measure the 3D structure of the atmosphere, water vapor and temperature in over 1,000 infrared spectral channels. This instrument is vital for weather forecasting up to seven days in advance of major weather events.

2. The Advanced Technology Microwave Sounder (ATMS), which assists CrIS by adding 22 microwave channels to improve temperature and moisture readings down to 1 Kelvin accuracy for tropospheric layers.

3. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which takes visible and infrared pictures at a resolution of just 400 meters (1312 feet), enables us to track not just weather patterns but fires, sea temperatures, nighttime light pollution as well as ocean-color observations.

4. The Ozone Mapping and Profiler Suite (OMPS), which measures how the ozone concentration varies with altitude and in time over every location on Earth’s surface. This instrument is a vital tool for understanding how effectively ultraviolet light penetrates the atmosphere.

5. Finally, the Clouds and the Earth’s Radiant System (CERES) will help understand the effect of clouds on Earth’s energy balance, presently one of the largest sources of uncertainty in climate modeling.

The JPSS-1 satellite is a sophisticated weather monitoring tool, and paves the way for its’ sister satellites JPSS-2, 3 and 4. It promises to not only provide early and detailed warnings for disasters like hurricanes, volcanoes and storms, but for longer-term effects like droughts and climate changes. Emergency responders, airline pilots, cargo ships, farmers and coastal residents all rely on NOAA and the National Weather Service for informative short-and-long-term data. The JPSS constellation of satellites will extend and enhance our monitoring capabilities far into the future.

image1_may

Images credit: an artist’s concept of the JPSS-2 Satellite for NOAA and NASA by Orbital ATK (top); complete temperature map of the world from NOAA’s National Weather Service (bottom).

This article is provided by NASA Space Place. With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov to explore space and Earth science!

Apr 15

Hubble Shatters The Cosmic Record For Most Distant Galaxy

By ESP-Logo-300.enthan Siegel
The farther away you look in the distant universe, the harder it is to see what’s out there. This isn’t simply because more distant objects appear fainter, although that’s true. It isn’t because the universe is expanding, and so the light has farther to go before it reaches you, although that’s true, too. The reality is that if you built the largest optical telescope you could imagine — even one that was the size of an entire planet — you still wouldn’t see the new cosmic record-holder that Hubble just discovered: galaxy GN-z11, whose light traveled for 13.4 billion years, or 97% the age of the universe, before finally reaching our eyes.

There were two special coincidences that had to line up for Hubble to find this: one was a remarkable technical achievement, while the other was pure luck. By extending Hubble’s vision away from the ultraviolet and optical and into the infrared, past 800 nanometers all the way out to 1.6 microns, Hubble became sensitive to light that was severely stretched and redshifted by the expansion of the universe. The most energetic light that hot, young, newly forming stars produce is the Lyman-α line, which is produced at an ultraviolet wavelength of just 121.567 nanometers. But at high redshifts, that line passed not just into the visible but all the way through to the infrared, and for the newly discovered galaxy, GN-z11, its whopping redshift of 11.1 pushed that line all the way out to 1471 nanometers, more than double the limit of visible light!

Hubble itself did the follow-up spectroscopic observations to confirm the existence of this galaxy, but it also got lucky: the only reason this light was visible is because the region of space between this galaxy and our eyes is mostly ionized, which isn’t true of most locations in the universe at this early time! A redshift of 11.1 corresponds to just 400 million years after the Big Bang, and the hot radiation from young stars doesn’t ionize the majority of the universe until 550 million years have passed. In most directions, this galaxy would be invisible, as the neutral gas would block this light, the same way the light from the center of our galaxy is blocked by the dust lanes in the galactic plane. To see farther back, to the universe’s first true galaxies, it will take the James Webb Space Telescope. Webb’s infrared eyes are much less sensitive to the light-extinction caused by neutral gas than instruments like Hubble. Webb may reach back to a redshift of 15 or even 20 or more, and discover the true answer to one of the universe’s greatest mysteries: when the first galaxies came into existence!

image1_april

Images credit:  (top); NASA, ESA, P. Oesch (Yale University), G. Brammer (STScI), P. van Dokkum (Yale University), and G. Illingworth (University of California, Santa Cruz) (bottom), of the galaxy GN-z11, the most distant and highest-redshifted galaxy ever discovered and spectroscopically confirmed thus far.

This article is provided by NASA Space Place. With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov to explore space and Earth science!

Apr 10

Gravitational Wave Astronomy Will Be The Next Great Scientific Frontier

SP-Logo-300.en

By Ethan Siegel

Imagine a world very different from our own: permanently shrouded in clouds, where the sky was never seen. Never had anyone see the Sun, the Moon, the stars or planets, until one night, a single bright object shone through. Imagine that you saw not only a bright point of light against a dark backdrop of sky, but that you could see a banded structure, a ringed system around it and perhaps even a bright satellite: a moon. That’s the magnitude of what LIGO (the Laser Interferometer Gravitational-wave Observatory) saw, when it directly detected gravitational waves for the first time.

An unavoidable prediction of Einstein’s General Relativity, gravitational waves emerge whenever a mass gets accelerated. For most systems — like Earth orbiting the Sun — the waves are so weak that it would take many times the age of the Universe to notice. But when very massive objects orbit at very short distances, the orbits decay noticeably and rapidly, producing potentially observable gravitational waves. Systems such as the binary pulsar PSR B1913+16 [the subtlety here is that binary pulsars may contain a single neutron star, so it’s best to be specific], where two neutron stars orbit one another at very short distances, had previously shown this phenomenon of orbital decay, but gravitational waves had never been directly detected until now.

When a gravitational wave passes through an objects, it simultaneously stretches and compresses space along mutually perpendicular directions: first horizontally, then vertically, in an oscillating fashion. The LIGO detectors work by splitting a laser beam into perpendicular “arms,” letting the beams reflect back and forth in each arm hundreds of times (for an effective path lengths of hundreds of km), and then recombining them at a photodetector. The interference pattern seen there will shift, predictably, if gravitational waves pass through and change the effective path lengths of the arms. Over a span of 20 milliseconds on September 14, 2015, both LIGO detectors (in Louisiana and Washington) saw identical stretching-and-compressing patterns. From that tiny amount of data, scientists were able to conclude that two black holes, of 36 and 29 solar masses apiece, merged together, emitting 5% of their total mass into gravitational wave energy, via Einstein’s E = mc2.

During that event, more energy was emitted in gravitational waves than by all the stars in the observable Universe combined. The entire Earth was compressed by less than the width of a proton during this event, yet thanks to LIGO’s incredible precision, we were able to detect it. At least a handful of these events are expected every year. In the future, different observatories, such as NANOGrav (which uses radiotelescopes to the delay caused by gravitational waves on pulsar radiation) and the space mission LISA will detect gravitational waves from supermassive black holes and many other sources. We’ve just seen our first event using a new type of astronomy, and can now test black holes and gravity like never before.

201603_MarchArticle

Image credit: Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), Physical Review Letters 116, 061102 (2016). This figure shows the data (top panels) at the Washington and Louisiana LIGO stations, the predicted signal from Einstein’s theory (middle panels), and the inferred signals (bottom panels). The signals matched perfectly in both detectors.

This article is provided by NASA Space Place. With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov to explore space and Earth science!

 

Mar 01

What’s Up in the Sky

What’s Up in the Sky – March, 2016

In the Middle Ages (before science) it was generally believed that heavier objects would fall to Earth faster than lighter objects. Some of my students still believed that twenty years ago. Galileo Galilei thought otherwise and just to demonstrate his theory (according to legend) he went to the top of the leaning tower of Pisa and dropped a 10-pound and a 5-pound cannon ball simultaneously. They both hit the ground at the same time.

His little demonstration probably did more to get him in trouble than to convince anyone their common sense was wrong. And, thanks to Edmund Halley’s prediction that a comet would return on a certain date (it did) it would take another hundred years or so before science was generally accepted.

Fast forward to now. One of modern science’s best known prediction makers was Albert Einstein. His list of hits is impressive: the bending of light by gravity, time dilation, anomalies in the orbit of Mercury, black holes. All of them have been verified many times. One prediction, however, was so extremely difficult to test that it took over a hundred years to verify. But it has been.

On February 11, scientists working with the Laser Interferometer Gravitational-wave Observatory (LIGO) announced that gravitational waves had been detected by the instrument on September 14, 2015. The time lag is how long it took them to verify the observation.

This is a monumental confirmation of general relativity, right up there with the 1919 test of the deflection of starlight by the eclipsed Sun, which made Einstein famous (he was right that time, also). Not only has this major prediction been verified, but also a new and unprecedented window into the cosmos has been opened.

Gravitational waves can be described as “ripples in the fabric of spacetime” and arrive at Earth after traveling for billions of years from the distant universe. Their existence was first demonstrated in the 1970s and 80s when scientists observing a pulsar and neutron star orbiting each other noticed that the orbit of the pulsar was slowly shrinking. They also showed that this was due to the release of energy in the form of gravitational waves and that measurements of gravitational waves would now be possible.

And that’s exactly what happened. The LIGO detectors are rather amazing pieces of technology. Each consists of two 4 km long, 4-ft diameter tubes kept at an almost perfect vacuum at right angles to each other. Two beams of laser light travel the lengths of the tubes to measure the distance between two precisely placed mirrors at the ends of the arms. According to Einstein, a gravitational wave passing the detector will cause the distance between the mirrors to change infinitesimally. The instrument is so sensitive that it can measure changes as small as one ten-thousandth the diameter of a proton!

Two such instruments are used, one in Washington and one in Louisiana, to determine the direction from which the waves originated and to rule out other possible sources. Interestingly, each had just undergone a major upgrade that increased its sensitivity and they were on their first observational run. Not bad for a first try.

Scientists are anxious to have more such devices at locations around the globe to give them an even better understanding of what’s up in the sky.

Older posts «